_@ MarLIN

Marine Information Network
o O Information on the species and habitats around the coasts and sea of the British Isles

Polychaetes and Angulus tenuisin littoral fine
sand

MarLIN - Marine Life Information Network
Marine Evidence-based Sensitivity Assessment (MarESA) Review

Dr Heidi Tillin & Dr Matt Ashley

2018-03-08

A report from:
The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for
the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1170]. All terms and the
MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

Tillin, H.M. & Ashley, M. 2018. Polychaetes and [Angulus tenuis] in littoral fine sand. In Tyler-Walters
H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews,
[on-line]. Plymouth: Marine Biological Association of the United Kingdom.

DOl https://dx.doi.org/10.17031/marlinhab.1170.1

@ (#H&®@)| The information (TEXT ONLY) provided by the Marine Life Information Network

ST (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share
Alike 2.0 UK: England & Wales License. Note that images and other media featured on
this page are each governed by their own terms and conditions and they may or may
not be available for reuse. Permissions beyond the scope of this license are available
here. Based on a work at www.marlin.ac.uk



https://www.marlin.ac.uk/habitats/detail/1170
https://www.marlin.ac.uk
https://www.marlin.ac.uk/termsandconditions
https://www.marlin.ac.uk/

(page left blank)



Date: 2018-03-08 Polychaetes and Angulus tenuis in littoral fine sand - Marine Life Information Network

Ll
-
5 |
£ e
- m |
Sl \
; % -
. B
- ' -

Core records
Maon-core, certain determination

* Mon-core, uncertain determination
Predicted habitat extent

17-09-2018
Biotope distribution data provided by

EMODnet Seabed Habitats
(www.emodnet-seabedhabitats.eu)

Researched by Dr Heidi Tillin & Dr Matt Ashley Refereedby Admin

= UK and Ireland classification

EUNIS 2008 A2.2312 Polychaetes and Angulus tenuis in littoral fine sand
JNCC 2015 LS.LSa.FiSa.Po.Aten Polychaetes and Angulus tenuis in littoral fine sand
JNCC 2004 LS.LSa.FiSa.Po.Aten Polychaetes and Angulus tenuis in littoral fine sand

1997 Biotope

W Description

This biotope occurs on the mid and lower shore on moderately wave-exposed and sheltered
coasts, with predominantly fine sand which remains damp throughout the tidal cycle. The sediment
is often rippled, and an anoxic layer may occasionally occur below a depth of 10 cm, though it is
often patchy. The infaunal community is dominated by the abundant bivalve Angulus tenuis
together with a range of polychaetes. The presence of polychaetes may be seen as coloured
burrows running down from the surface of the sediment. Polychaetes that are characterizing for
this biotope include Nephtys cirrosa, Paraonis fulgens and Spio filicornis. Burrowing amphipods
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Bathyporeia spp. may occur in some samples of this biotope. (Information from Connor et al., 2004;
JNCC, 2015).

| Depthrange

Mid shore, Lower shore

Additional information

E

« Listed By

- none -

% Further information sources

Search on:
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Sensitivity review

Sensitivity characteristics of the habitat and relevant characteristic species

The LS.LSa.FiSa.Po.Aten biotope occurs on the mid and lower shore on moderately wave-exposed
and sheltered coasts. The infaunal community is dominated by the characterizing bivalve Angulus

(now Macoangulus) tenuis together with a range of polychaetes. Polychaetes that characterize this
biotope include Nephtys cirrosa, Paraonis fulgens and Spio filicornis. Burrowing

amphipods Bathyporeia spp. may occur in some samples of this biotope.

The sensitivity assessments are based on the sensitivity of Macoangulus tenuis, the dominant
polychaetes, and to a lesser extent the sensitivity of amphipods.

Resilience and recovery rates of habitat

The biotope can be subject to annual changes, as the infauna of the biotope may be reduced during
winter, as increased storminess and wave action increases sediment mobility, leading to some
species migrating or being washed out of the sediment. The biotope recovers during more stable
periods through in-situ reproduction, although water transport of adults and active migration of
mobile species such as Nephtys cirrosa and Bathyporeia spp. are likely to be the key recovery
mechanisms, e.g. McLusky et al., 1983.

Little evidence was found to assess the recovery rates of the characterizing bivalve Macoangulus
tenuis. In the Wadden Sea of northern Sylt, Macoangulus tenuis (recorded as Angulus tenuis)
disappeared following a harsh winter in 1963 and by 1982, populations had not recovered,
although no reason for this was suggested (Resise, 1982). The reduction in population would have
reduced the available spat and it may be that the population had declined below limits that allowed
successful annual recruitment. The population in the western Wadden Sea, however, increased
during the 1970's following a succession of mild winters (Beukema et al. 1978).

Nephtys cirrosa is a relatively long-lived polychaete with a lifespan of six to possibly as much as nine
years. It matures at one year and the females release over 10,000 (and up to 80,000 depending on
species) eggs of 0.11-0.12 mm from April through to March. These are fertilized externally and
develop into an early lecithotrophic larva and a later planktotrophic larva which spends as much as
12 months in the water column before settling from July-September. The genus Nephtys has a
relatively high reproductive capacity and widespread dispersion during the lengthy larval phase. It
is likely to have a high recoverability following disturbance (MES, 2010).

Paraonis fulgens, is a small polychaete, up to 3 cm in length. Paraonis fulgens displays growth and
reproduction strategies typical of opportunistic species and occurred in highly dynamic
communities in German estuaries in a community of opportunistic species (Nehmer et al., 2003).
Therefore, it is likely to show rapid recovery. Paraonis fulgens is thought to feed exclusively on
benthic diatoms so that its abundance and recovery is likely to be affected by changes in levels of
primary productivity (Gaston etal., 1992).

Spiophanes spp. (e.g. Spiophanes filicornis, Spiophanes martinensis, Spiophanes bombyx) have
opportunistic life strategies (Kréencke, 1980; Niermann et al., 1990). They are characterized by
small size, rapid maturation and short-lifespan of 1-2 years and produce large numbers of small
propagules. Itis often found at the early successional stages of variable, unstable habitats that it is
quick to colonize following perturbation (Pearson & Rosenberg, 1978). For example, two years
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after dredging, the abundance of opportunistic species was generally elevated relative to pre-
dredging levels and the communities were numerically dominated (50-70%) by Spiophanes bombyx
(Gilkinson et al., 2005). Van Dalfsen et al. (2000) found that polychaetes recolonized a dredged
area within 5-10 months (cited from Boyd et al., 2005) and their biomass was predicted to recover
within 2-4 years.

Bathyporeia spp. are short lived, reaching sexual maturity within 6 months with 6-15 eggs per
brood, depending on species. Reproduction may be continuous (Speybroeck et al., 2008) with one
set of embryos developing in the brood pouch whilst the next set of eggs is developing in the
ovaries. However, specific reproductive periods vary between species and between locations
(Mettam, 1989) and bivoltine patterns (twice yearly peaks in reproduction) have been observed
(Mettam, 1989; Speybroeck et al., 2008). Adult amphipods are highly mobile in the water column
and recolonization by the adults is likely to be a significant recovery pathway. The life history traits
of rapid sexual maturation and production of multiple broods annually support rapid local
recolonization of disturbed sediments where some of the adult population remains.

Resilience assessment. This biotope is characterized by opportunistic polychaetes and mobile
amphipods that are characteristic of biotopes subject to natural and/or anthropogenic
disturbance. Biotope resilience is considered to be High as populations of the characterizing
species are likely to recover within two years, even after severe depletion of the resident
populations or community, unless the substratum or other key habitat factors are altered.

#® Hydrological Pressures

Resistance Resilience Sensitivity
Temperatureincrease  High High Not sensitive
(|0C3|) Q: High A: High C: Medium Q: High A: High C: High Q: High A: High C: Medium

Intertidal species are exposed to extremes of high and low air temperatures during periods of
emersion. They must also be able to cope with sharp temperature fluctuations over a short period
of time during the tidal cycle. In winter air temperatures are colder than the sea, conversely in
summer air temperatures are much warmer than the sea. Species that occur in the intertidal are
therefore generally adapted to tolerate a range of temperatures, with the width of the thermal
niche positively correlated with the height of the shore that the animal usually occurs at
(Davenport & Davenport, 2005). The geographic distribution of species characteristic of this
biotope extend south of the British Isles, further suggesting these species are likely to be resistant
to anincrease in temperature. Infaunal species are likely to be protected to some extent from
direct effects of acute increases in temperature by sediment buffering, although increased
temperatures may affect infauna indirectly by stimulating increased bacterial activity and
increased oxygen consumption.

The characterizing bivalve Macoangulus tenuis is found off the Norwegian coasts to the
Mediterranean and north-west coast of Africa and is likely to be resistant to temperature changes
at the pressure benchmark.

Emery & Stevensen (1957) reported that Nephtys spp. could withstand summer temperatures of
30-35°C soiis likely to withstand the benchmark acute temperature increase. An acute increase in
temperature at the benchmark level may result in physiological stress endured by the infaunal
species but is unlikely to lead to mortality. Nephtys cirrosa is an active worm that can swim short
distances and, therefore, it could avoid short-term changes in temperature by migrating away
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from localised warmer spots.

No direct evidence was found to assess the sensitivity of Paraonis fulgens, however, this species is
recorded in warmer waters than the UK in the Gulf of Mexico. Paraonis fulgens was one of the most
abundant macrobenthic organisms collected in the shallow waters off Perdido Key, Florida, where
winter water temperatures average 22 °C (Gaston et al. 1992). Spiophanes bombyx is found in the
Mediterranean (Hayward & Ryland, 1995), which is likely to be warmer than the waters around
Britain and Ireland.

The amphipods that occur within this habitat are mobile and can avoid unfavourable conditions to
some extent. Bathyporeia life cycles vary between locations and this is related to temperature
(Mettam, 1989). Preece (1971) tested temperature tolerances of Bathyporeia pilosa in the
laboratory. Individuals acclimated to 15°C for 24 hours were exposed to temperature increases
(water temperature raised by 0.2°C/minute). As test temperature were reached individuals were
removed, placed in seawater at 4°C and allowed to recover for 24 hours at which point mortalities
were tested. Amphipods were also allowed to bury into sediments and held at test temperatures
for 24 hours of 32.5°C, 31.8°C and 29.5°C before being allowed to recover in fresh seawater at
15°C for a further 24 hours, before mortalities were assessed. Upper lethal temperatures (the
temperature at which 50% of individuals died for adult males and gravid females of Bathyporeia
pilosa were 39.4°C. These tests measures short-term exposure only and species had lower
tolerance for longer-term (24 hour exposure). No mortality occurred for Bathyporeia

pilosa individuals held at 29.5°C and 30.8°C; however 15% of individuals exposed to water
temperatures of 31.8°C and 96% at 32.5°C died.

Sensitivity assessment. Typical surface water temperatures around the UK coast vary seasonally
from 4-19°C (Huthnance, 2010). A chronic increase in temperature throughout the year of 2°C
may fall within the normal temperature variation and an acute increase in water temperatures
from 19 to 24°C for a month may be tolerated by the characterizing species supported by deeper
burrowing and/or migration. It is likely that the characterizing species are able to resist a long-
term increase in temperature of 2°C and may resist a short-term increase of 5°C. Resistance and
resilience are, therefore assessed, as ‘High’ and the biotope is assessed as ‘Not Sensitive’ at the
benchmark level

Temperature decrease Medium High Low
(Iocal) Q: High A: Medium C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

Intertidal species are exposed to extremes of high and low air temperatures during periods of
emersion. They must also be able to cope with sharp temperature fluctuations over a short period
of time during the tidal cycle. In winter air temperatures are colder than the sea, conversely in
summer air temperatures are much warmer than the sea. Species that occur in the intertidal are
therefore generally adapted to tolerate a range of temperatures, with the width of the thermal
niche positively correlated with the height of the shore that the animal usually occurs at
(Davenport & Davenport, 2005). Some of the characterizing species are found in colder waters
that the UK suggesting these can tolerate colder waters than typically encountered. Angulus
tenuis is found off the Norwegian coasts to the Mediterranean and north-west coast of Africa and
is likely to be resistant to temperature changes at the pressure benchmark. In the Wadden Sea of
northern Sylt, Macoangulus tenuis (recorded as Angulus tenuis) disappeared following a harsh winter
in 1963 and by 1982, populations had not recovered, although no reason for this was suggested
(Resise, 1982). The reduction in population would have reduced the available spat and it may be
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that the population had declined below limits that allowed successful annual recruitment. The
population in the western Wadden Sea, however, increased during the 1970's following a
succession of mild winters (Beukema et al. 1978). The temperatures during the severe winters
exceeded -10°C for more than 5 days and thus are greater than the assessed pressure benchmark.

Paraonis fulgens occurs in colder waters than Irish and UK seas, such as the Bay of Fundy, Canada
where winter temperatures are between 0 and 4 °C (Risk & Tunnicliffe 2006). Spiophanes bombyx is
found in water off Denmark (Thorson, 1946) which are likely to be colder than British and Irish
waters.However, Nephtys cirrosa reaches its northern limit in Scotland, and German Bight of the
North Sea. A decrease in temperature may result in loss of the species from the biotope in these
areas.

Crisp (1964) reported that species of amphipod seemed to be unharmed by the severe winter of
1962-1963. This may be due to burial in sediments buffering temperature or seasonal migration to
deeper waters to avoid freezing. In the winter migrations have also been observed

for Bathyporeia spp. (Fish & Fish, 1978; Fish & Preece, 1970). Preece (1971) tested temperature
tolerances of Bathyporeia pilosa in the laboratory. Individuals acclimated to 15°C for 24 hours were
placed in a freezer in wet sediment. As test temperatures were reached individuals were removed
and allowed to recover for 24 hours at which point mortalities were tested. Amphipods were also
allowed to bury into sediments and held at test temperatures of -1°C, -3°C and -5°C for 24 hours
before being allowed to recover in fresh seawater at 15°C for a further 24 hours before mortalities
were assessed. The lower lethal short-term tolerances of Bathyporeia pilosa were

-13.6°C. Bathyporeia pilosa individuals could withstand temperatures as low as -1°C for 24 hours, at
-3°C, 5% of Bathyporeia pilosa died but this rose to 82% at -5°C.

Sensitivity assessment..Typical surface water temperatures around the UK coast vary seasonally
from 4-19°C (Huthnance, 2010). A chronic decrease in temperature throughout the year of 2°C
may fall within the normal temperature variation but an acute decrease in water temperatures
from 4°C to -1°C at the coldest part of the year may lead to freezing and lethal effects but may be
tolerated by the characterizing species through deeper burrowing and/or migration. However, the
abundance of Nephtys cirrosa may be reduced in northern examples of the biotope or severe
winters. Therefore, biotope resistance is assessed as Medium. However, resilience is probably
‘High’ and sensitivity is assessed as Low.

ot High Low
Salinity increase (local)
Q: High A: NR C: NR Q: High A: Low C: Medium Q: Low A: Low C: Low

This biotope is found in full salinity (30-35 ppt) and variable salinity habitats (18-35 ppt) (JNCC,
2015). A change at the pressure benchmark is therefore assessed as a change to hypersaline
conditions (>40 ppt) from full salinity. Little evidence was found to assess responses to
hypersalinity and no evidence was found for Macoangulus tenuis which is typical of estuarine
conditions.

Monitoring at a Spanish desalination facility where discharges close to the outfall reached a
salinity of 53, found that amphipods were sensitive to the increased salinity and that species free-
living in the sediment were most sensitive (De-la-Ossa-Carretero et al., 2016). Roberts et al. (2010)
concluded that the reported effects of brine discharges were limited and difficult to compare but
identified some trends. Hypersaline effluents tend to disperse quickly in well flushed
environments like the habitat this biotope occurs in. However, sediment communities were
affected in the immediate vicinity of brine discharges. For example, one of the studies reviewed
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found that the sediment became dominated by nematodes, with polychaetes, crustaceans and
molluscs only fond at a distance from the outfall. Another study noted that the diversity of
polychaete communities decreased adjacent to the outfall, and that the Ampharetidae were the
most sensitive while the Paranoidae were the least sensitive.

Sensitivity assessment. No direct evidence was found to assess biotope sensitivity. However, if
the biotope was exposed to hypersaline effluents then a proportion of the community may be lost
and species diversity and abundances are likely to decrease. Therefore, a biotope resistance of
Low is suggested. Resilience is probably High (following restoration of the usual salinity regime) so
that sensitivity is assessed as Low.

. . High High Not sensitive
Salinity decrease (local)
Q: High A: Medium C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

The biotope occurs in full and variable salinity. Intertidal flats are likely to experience short periods
of reduced salinities following rainfall at low tide. However, freshwater sits on the surface of
denser seawater and interstitial water remains close to full salinity. Species will have some
tolerances for salinity change, and may osmoregulate, may stop irrigating their burrow, or may
move seaward if mobile or burrow deeper into the sediment (McLusky, 1989). Short-term
tolerance is likely to be high but changes in salinity over the longer time may affect the biological
assemblage. A decrease in salinity at the pressure benchmark refers to a change to low salinity
(<18ppt) for ayear and is likely to lead to a change in biotope character and classification as the
reduction is likely to exceed some species tolerances.

Nephtys cirrosa were most abundant in salinities >30 psu in the German Bight (south eastern North
Sea) (MeiRRner et al., 2008), while Spiophanes bombyx is a euryhaline species (Bailey-Brook, 1976;
Maurer & Lethem, 1980), inhabiting fully saline and estuarine habitats. Spio martinensis was a
characterizing species in estuarine channels and inlets in Germany, suggesting resistance to lower
salinities (Nehmer et al., 2003)

Mobile species, such as Nepthys cirrosa and the amphipods may migrate to avoid unfavourable
conditions. Bathyporeia pelagica migrates seaward in response to reduced salinities, the effect of
which is enhanced by higher temperature (Preece, 1970). Bathyporeia pilosa is, however, more
tolerant than Bathyporeia pelagica of low salinities and is capable of reproducing at salinities as low
as 2 (Khayrallah, 1977). Populations of Bathyporeia pilosa within the upper reaches of the Severn
Estuary experience wide fluctuations in salinity ranging from 1-22 depending on the season and
tidal cycle (Mettam, 1989). The physiological stress for this environment affects size and
reproduction (Mettam, 1989). Speybroeck et al. (2008) noted that Bathyporeia pilosa tends to occur
subtidally in estuarine and brackish conditions. Local populations may be acclimated to the
prevailing salinity regime and may exhibit different tolerances to other populations subject to
different salinity conditions and, therefore, caution should be used when inferring tolerances from
populations in different regions.

Sensitivity assessment. A decrease in salinity at the pressure benchmark is may lead to some
changes in species presence and abundance and the loss of characterizing species such as
Macoangulus tenuis and Nephtys cirrosa. Bathyporeia pilosa has high salinity tolerances and may
replace more sensitive species, oligochaetes tolerant of low salinity conditions may also occur.
based on the loss of the characteristic biotope, resistance is assessed as 'Low' over the course of a
year and recovery is assessed as 'High' following re-establishment of typical habitat conditions.
Biotope sensitivity is therefore assessed as 'Low'. Following the loss of populations of Macoangulus
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(as Angulus) tenuis in the Wadden Sea following a series of severe winters, recovery of Macoangulus
tenuis was not observed over the corse of >5 years (Reise, 1982) and the possibility of prolonged
recovery and higher sensitivity should be considered by managers if changes would affect a large

area.
Water flow (tidal High High
current) changes (local) q:LowA:NRC:NR Q: High A: High C: High Q: Low A: Low C: Low

The biotope and sub biotopes occur on moderately exposed or sheltered beaches. Tidal flow
velocities are likely to be variable across the range of habitats where this biotope occurs. Changes
in flow velocity may lead to changes to another sub-biotope within the LS.LSa.FiSa.Po group.

Sensitivity assessment. The LS.LSa.FiSa.Po biotope (and sub-biotopes) occur in water flow
velocities from very weak to moderately strong and in a moderately strong to sheltered wave
climate The fine sand in low in mud and organic matter, which suggests it is well sorted and
oxygenated by water movement. Species characterizing the biotope are likely to be resistant to
changes at the pressure benchmark level (a 0.1-0.2 m/s change in flow,) although changes between
sub-biotopes may occur if silt or mud content of the substratum changes. Resistance and resilience
are assessed as ‘High’ and sensitivity is assessed as ‘Not Sensitive’

Emergence regime Medium High Low
Changes Q:Low A:NRC:NR Q: High A: Low C: Medium Q: Low A: Low C: Low

The biotope LS.LSa.FiSa.Po.Aten is typically found on the mid and lower shore. An increase in
emergence may result in loss of the upper extent of the biotope and replacement by the similar
biotope LS.LSa.FiSa.Po.Pfu, LS.LSa.MoSa.AmScoEur or LS.LSa.MoSa.Ol.FS which tend to occur
higher on the shore (JNCC, 2015). A decrease in emergence may allow the biotope to extend up
the shore if suitable habitat exists. However a decrease in emergence may result in decreased
recruitment and survival of Macoangulus tenuis due to predation by shrimp, juvenile flatfish and
other predators.

Sensitivity assessment. Increased and decreased emergence are likely to reduce the upper and
lower limits of the biotope, respectively. Although polychaetes and amphipods would probably
migrate down the shore, the upper or lower extent of the biotope may be replaced by a species
assemblage more typical of the changed shore level. Therefore, a resistance of Medium is
suggested (as 25-75% of the biotope may be lost). Resilience is probably High (following
restablishment of emergence regime) and sensitivity is assessed as Low.

Wave exposure changes High High Not sensitive
(local) Q:Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The biotope occur on shores that range from moderately exposed to extremely sheltered (JNCC,
2015). Increases and decreases in wave exposure may lead to increased erosion or deposition.

Increased wave exposure is likely to resuspend finer material and may lead to loss or reductionin
abundance of Macoangulus tenuis and a greater abundance of Nepthys cirrosa which is
characteristic of the coarser sand biotope LS.LSa.FiSa.Po.Ncir. The circulatory motion of wave
action may also wash infauna such as Nepthys cirrosa and Macoangulus tenuis from the sediment in
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the most exposed locations. Although increased wave action is likely to wash some individuals
from the sediment, recovery would be rapid.

Sensitivity assessment. An increase in wave height at the benchmark level is unlikely to create a
noticeable impact, where initial conditions are sheltered. The biotope is reported to be naturally
disturbed by winter storms (Connor et al., 2004) and a 3-5% change in significant wave height (the
benchmark) is unlikely to affect the biotope adversely Therefore, resistance and resilience are
assessed as ‘High’, and the biotope is assessed as, ‘Not Sensitive’ at the benchmark level.

& Chemical Pressures

Resistance Resilience Sensitivity
Transitionelements & Nt Assessed (NA) Not assessed (NA) Not assessed (NA)
organo-metal
contamination Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

This pressure is Not assessed but evidence is presented where available.

Levels of contaminants that exceed the pressure benchmark may cause impacts. Bryan & Gibbs
(1983) reported lower sediment-metal concentrations in sandy areas than mud near the mouth of
Restronguet Creek, a branch of the Fal Estuary system which is heavily contaminated with metals.
Although heavy metals may not accumulate in the substratum to the extent that they would in
muddy substrata, characterizing infauna are likely to be susceptible. Bryan & Gibbs (1983)
suggested that in populations of polychaetes exposed to heavy metal contamination for a long
period, metal resistance could be acquired. For example Nephtys hombergii from Restronguet
Creek seemed able to regulate copper. The head end of the worm became blackened and x-ray
microanalysis by Bryan & Gibbs (1983) indicated that this was caused by the deposition of copper
sulphide in the body wall. In the same study, Bryan & Gibbs (1983) presented evidence that
Nephtys hombergii from Restronguet Creek possessed increased tolerance to copper
contamination. Specimens from the Tamar Estuary had a 96 h LC50 of 250 pg/|, whilst those from
Restronguet Creek had a 96 h LC50 of 700 ug/I (35 psu; 13°C).

Hydrocarbon & PAH Not Assessed (NA) Not assessed (NA) Not assessed (NA)
contamination Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA: NR C:NR

This pressure is Not assessed but evidence is presented where available.

Contamination at levels greater than the pressure benchmark may adversely influence the
biotope. Suchanek (1993) reviewed the effects of oil spills on marine invertebrates and concluded
that, in general, on soft sediment habitats, infaunal polychaetes, bivalves and amphipods were
particularly affected.

Oil spills resulting from tanker accidents have caused deterioration of sandy communities in the
intertidal and shallow sublittoral. Subtidal sediments, however, may be at less risk from oil spills
unless oil dispersants are used, or if wave action causes dispersion of oil into the water column and
sediment mobility drives oil in to the sediment (Elliott et al., 1998). Microbial degradation of the oil
within the sediment would increase the biological oxygen demand and oxygen within the sediment
may become significantly reduced.
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Species within the biotope have been reported to be intolerant of oil pollution, e.g. amphipods
(Suchanek, 1993). After the Amoco Cadiz oil spill there was a reduction in both the number of
amphipod species and the number of individuals (Cabioch et al., 1978). Initially, significant
mortality would be expected, attributable to toxicity. Amphipod populations have been reported
not return to pre-spill abundances for five or more years, which is most likely related to the
persistence of oil within sediments (Southward, 1982). Nephtys species were amongst the fauna
that was eradicated from sediments following the 1969 West Falmouth spill of Grade 2 diesel fuel
documented by Sanders (1978).

Multivariate analysis showed that the Prestige oil spill scarcely affected the macroinfaunal
community structure during the study period (2003-2009) and its effect was limited just to the
first campaign (2003), six months after the Prestige accident (Junoy et al., 2013). Opportunistic
species such Capitella capitata have been shown to increase in abundance close to sources of
contamination. High numbers of Capitella capitata have been recorded in hydrocarbon
contaminated sediments (Ward & Young, 1982; Olsgard, 1999; Petrich & Reish, 1979) and
colonization of areas defaunated by high hydrocarbon levels may be rapid (Le Moal, 1980). After a
major spill of fuel oil in West Virginia Capitella capitata increased dramatically alongside large
increases in Polydora ligni and Prionospio sp. (Sanders et al. 1972, cited in Gray 1979).

Synthetic compound Not Assessed (NA) Not assessed (NA) Not assessed (NA)
contamination QNRA:NRC: NR Q NRA:NR C:NR Q NRA: NR C:NR

This pressure is Not assessed but evidence is presented where available.

Boon et al. (1985) reported that Nephtys species in the North Sea accumulated organochlorines
but, based on total sediment analyses, organochlorine concentrations in Nephtys species were not
correlated with the concentrations in the (type of) sediment which they inhabited.

Radionuclide No evidence (NEv) No evidence (NEv) No evidence (NEv)
contamination Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NR C:NR

No evidence was found to assess this pressure.

Introduction of other Not Assessed (NA) Not assessed (NA) Not assessed (NA)
substances Q:NRA:NR C: NR Q:NRA:NR C: NR Q:NRA:NRC: NR

This pressure is Not assessed.

D . Medium High Low
e-oxygenation
Q: High A: High C: Medium Q: High A: Medium C: Medium Q: High A: Medium C: Medium
No information concerning the reduced oxygen tolerance of Nephtys cirrosa was found but
evidence (Alheit, 1978; Arndt & Schiedek, 1997; Fallesen & Jargensen, 1991) indicated a similar
species, Nephtys hombergii, to be very tolerant of episodic oxygen deficiency and at the benchmark
duration of one week. Nephtys cirrosa and Spio spp. were classified by Borja et al. (2000) as being
indifferent to enrichment, suggesting some resilience to de-oxygenation. Dense Capitella
capitata populations are frequently located in areas with greatly elevated organic content, even
though eutrophic sediments are often anoxic and highly sulfidic (Tenore 1977; Warren 1977;
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Tenore & Chesney 1985; Bridges et al. 1994). The polychaetes Capitella capitata, Pygospio
elegans and Scoloplos armiger have all been reported to recolonize habitats following periods of
anoxia and hypoxia.

Sensitivity assessment. The species characterizing the biotope are mobile and able to migrate
vertically or horizontally to escape unsuitable conditions. The biotope is characterized by well
sorted and oxygenated sands, where the anoxic layer occurs below 10 cm and is patchy where it
occurs (Connor et al., 2004). This suggests that the resident species may not be adapted to low
oxygen levels but also that deoxygenation of the water column may be short-lived, especially as
the biotope is exposed at low tide. Therefore, while some members of the community are known
to be tolerant, other species may be lost or reduced in abundance and a resistance of Medium is
suggested. ‘Resilience is probably ‘High’ ( and sensitivity is assessed as Low. However, hypoxia or
anoxia caused by the bacterial decomposition of organic matter may be detrimental.

. . Not relevant (NR) Not relevant (NR) Not sensitive
Nutrient enrichment
Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NR C:NR

This pressure relates to increased levels of nitrogen, phosphorus and silicon in the marine
environment compared to background concentrations. The benchmark is set at compliance with
WEFD criteria for good status, based on nitrogen concentration (UKTAG, 2014).

In-situ primary production is limited to microphytobenthos within and on sediments and the high
levels of sediment mobility may limit the level of primary production as abrasion would be likely to
damage diatoms (Delgado et al., 1991).

Sensitivity assessment. Nutrient level is not a key factor structuring the biotope at the pressure
benchmark. Ingeneral, however, primary production is low, this biotope is species poor, and
characterizing species may be present at low abundances (depending on wave exposure).

Organic enti High High
rganic enrichment
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Benthic responses to organic enrichment have been described by Pearson & Rosenberg (1978) and
Gray (1981). In general, moderate enrichment increases food supply and increases productivity
and abundance. Nephtys cirrosa and Spio spp. were classified by Borja et al. (2000) as being
indifferent to enrichment. Dense Capitella capitata populations are frequently located in areas with
greatly elevated organic content such as areas of sewage disposal and below fish farms and mussel
long lines, even though eutrophic sediments are often anoxic and highly sulfidic (Gray, 1979;
Tenore, 1977; Warren, 1977; Tenore & Chesney, 1985; Bridges et al., 1994; Haskoning, 2006;
Callier etal., 2007).

Sensitivity assessment.At the benchmark levels, resistance was assessed as ‘High’ as the main
characterizing species are tolerant of organic enrichment and an input at the pressure benchmark
is considered unlikely to lead to gross pollution effects . A resilience of ‘High’ is assigned (by
default) and the biotope is assessed as ‘Not sensitive’.

A Physical Pressures
Resistance Resilience Sensitivity
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Physical loss (tolandor [N High
freshwater habitat) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine and estuarine habitats and benthic species within them are considered to have a
resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat
(resilience is ‘Very Low’). Sensitivity within the direct spatial footprint of this pressure is therefore
‘High’. Although no specific evidence is described confidence in this assessment is ‘High’, due to
the incontrovertible nature of this pressure.

Physical change (to None High
another seabed type) Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

A change to natural or artificial hard substratum would remove this sedimentary biotope and the
species. If pockets of fine sediment accumulate in pockets within the substrata then these areas

may be re-colonised by species associated with this biotope but these pockets of sediment would
not be equivalent to the biotope. Recovery will depend on the re-instatement of suitable habitat.

Sensitivity assessment. Based on the loss of suitable habitat, biotope resistance to this pressure is
assessed as ‘None’. Resilience is assessed as ‘Very low’ as the pressure benchmark refers to a
permanent change. Biotope sensitivity is therefore ‘High’.

Physical change (to None High Medium
another sediment type) q:iowA:NRC:NR Q: High A: High C: High Q: Low A: Low C: Low

The benchmark for this pressure refers to a change in one Folk class. The pressure benchmark
originally developed by Tillin et al., (2010) used the modified Folk triangle developed by Long
(2006) which simplified sediment types into four categories: mud and sandy mud, sand and muddy
sand, mixed sediments and coarse sediments. The change referred to is, therefore, a change in
sediment classification rather than a change in the finer-scale original Folk categories (Folk, 1954).
The change in one Folk class is considered to relate to a change in classification to adjacent
categories in the modified Folk triangle (Long, 2006). As this biotope occurs within fine sands
(JNCC, 2015), the change at the pressure benchmark refers to a potential change to coarse
sediments, mixed sediments, sand and muddy sands or mud.

The particle size of sediments and correlated physical and chemical factors (such as drainage,
organic matter content and hydrodynamic regime), is a key determinant of the structure of benthic
invertebrate assemblages (Van Hoey et al., 2004, Yates et al., 1993). Infauna can be affected by
changes in sediment as many are adapted to burrow through certain grades of sediment (Trueman
& Ansell, 1969), decreased fine fractions will reduce habitat suitability for species that maintain
permanent burrows. Changes in sedimentary features may also influence the proportions of
suspension and deposit feeding animals (Sanders, 1968), with deposit feeders favoured by
increases in the proportion of silts and clays. In North America, cultivation of clam species
including the Manila clam, Tapes philippinarum usually involves some form of habitat modification
in the form of adding gravel or gravel and crushed shell over mud and sand beaches, to create a
more productive clam habitat (referred to as ‘gravelled clam plots’). Such habitat modifications
lead to alterations in the local environment and consequently faunal composition. Simenstad and
Fresh (1995, cited in Kaiser & Beadman, 2002) reported that the application of gravel to intertidal
sediments resulted in a shift from a polychaete to a bivalve and nemertean dominated community,

https://www.marlin.ac.uk/habitats/detail/1170




Date: 2018-03-08 Polychaetes and Angulus tenuis in littoral fine sand - Marine Life Information Network

but emphasised that changes are likely to be site-specific.

Sensitivity assessment. Individual members of the community are found in a range of different
sediment types, at different abundances. The character of the habitat is largely determined by the
sediment type, changes to this would lead to habitat re-classification. The addition of coarse sand
particles or fine particles in sufficient quantities would lead to the development of a different
habitat type. Changes in sediment characteristics can lead to changes in community structure. An
increase in coarse sediments would lead to the development of a community typical of mixed
sediments, clean sands and/or gravels depending on the degree of change. In general, an increase
to very coarse sediments may favour some amphipod species rather than burrowing polychaetes
and sessile tube-dwelling polychaetes. A change to a muddier biotope would lead to
reclassification to a biotope within the LS.LSa.MuSa with bivalves such as Cerastoderma edule or
Macoma balthica favoured as these can switch between filter and deposit feeding depending on
turbidity from resuspended finer particles. This change would alter the character of the biotope
present leading to re-classification, biotope resistance is assessed as 'None' and, as the change is
permanent, resilience is assessed as 'Very Low'. Biotope sensitivity is therefore 'High'.

Habitat structure None High Medium
changes - removal of
substratum (extraction) Q: Low A: NR C:NR Q: High A: Low C: Medium Q: Low A: Low C: Low

The process of extraction is considered to remove all biological components of the biotope group.
If extraction occurred across the entire biotope, loss of the biotope would occur. Recovery would
require substratum to return to sand.

Sensitivity assessment. Resistance of the biotope to extraction is probably ‘None’. Resilience
differs between species with slower recovery likely to be displayed by Nephtys cirrosa. Resilience is
assessed as ‘High’ (although if the substratum changed recovery could be prolonged) and biotope
sensitivity is assessed as ‘Medium’.

Abrasion/disturbance of High Low
the surface of the
substratum or seabed Q: High A: High C: Medium Q: High A: Medium C: High Q: High A: Medium C: Medium

Fine sands will retain water better than coarse sands and will be relatively cohesive and therefore
resistant to erosion following surface disturbance. The characterizing bivalve Angulus tenuis

and other species require contact with the surface for respiration and feeding, fragile animals that
are buried close to the surface will be vulnerable to damage, depending on the force of the surface
abrasion. Surface compaction can collapse burrows and reduce the pore space between particles,
decreasing penetrability and reducing stability and oxygen content. The tops of burrows may be
damaged and repaired subsequently at energetic cost to their inhabitants. Experiments with
trampling, a pathway for compaction effects, have shown that areas subject to compaction tend to
have reduced species abundance and diversity (see trampling pathway below). Sheehan et al.
(2007) proposed that following compaction, organisms avoid or emigrate from affected areas.This
biotope is present in disturbed and well sorted sands, the associated species are generally present
in low abundances and adapted to frequent disturbance. Therefore, resistance to surface abrasion
is probably ‘High'. The polychaete Nephtys cirrosa is adapted to life in unstable sediments and
survives through rapid burrowing (McDermott, 1983, cited from Elliott et al., 1998). This
characteristic is likely to protect this species from surface abrasion.
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Paraonis fulgens were found to reduce in abundance in experimental areas exposed to trampling
(Reyes-Martinez et al., 2015), suggesting a lower resistance of this species to abrasion or surface
disturbance. Chandrasekara and Frid (1996) found that some species including Capitella

capitata and Scoloplos armiger reduced in abundance in intertidal muds,along a pathway heavily
trampled for five summer months (ca 50 individuals a day Bonsdorff & Pearson (1997) found that
sediment disturbance forced Capitella capitata deeper into the sediment, although the species was
able to burrow back through the sediment to the surface again.Juveniles and adults of Scoloplos
armiger stay permanently below the sediment surface and freely move without establishing
burrows. While juveniles are only found a few millimeters below the sediment surface, adults may
retreat to 10 cm depth or more (Reise, 1979; Kruse et al., 2004) and are likely to be more
protected. The egg cocoons are laid on the surface and hatching time is 2-3 weeks during which
these are vulnerable to surface abrasion.

A number of studies have assessed the effects of trampling on other intertidal amphipods and
these assessments are used as a proxy. Comparisons between shores with low and high levels of
trampling found that the amphipod Bathyporeia pelagica is sensitive to human trampling, other
species including Pontocrates arenarius and the isopod Eurydice affinis also decreased in response to
trampling but Bathyporeia pelagica appeared to be the most sensitive (Reyes-Martinez et al.,
2015). Changes in abundance of talitrid amphipods on urban beaches subject to high levels of
recreational use was also observed by Bessa et al. (2014), this study compared abundances
between samples taken ten years apart and thus the trends observed were not directly
attributable to trampling vs beach cleaning or other pressures although they illustrate a general
trend in density patterns as recreational use increases. Ugolini et al. (2008) carried out a controlled
trampling experiment on Talitrus saltator. Plastic cylinders of 110 cm diameter (area 0.95 m?) were
placed in the sand and all individuals trapped and counted, and 400 steps were made in a cylinder
in 15 minutes after the amphipods had reburied. The trampling rate was based on observed
number of beach users and therefore represents a realistic level of exposure. Alive individuals
were counted at the end of the experiment and 24 hours after. Trampling significantly reduced
abundance of the amphipods and after 24 hours the percentage of surviving amphipods dropped
to almost zero, while survival rates of control (untrampled) amphipods were unaffected. Abrasion
and compaction can, therefore, kill buried amphipods within sediments.

Sensitivity assessment. The characterizing species are likely to be reduced following abrasion
impacts. However, species in the biotope are adapted to some sediment disturbance. Resistance is
assessed as ‘Medium’, and resilience is assessed as ‘High’ as migration and water transport of
adults will support recolonisation. Sensitivity is, therefore, assessed as ‘Low’.

P-enetratlon or High Low
disturbance of the
substratum subsurface Q: High A: High C: High Q: High A: High C: Medium Q: High A: High C: Medium

Kaiser et al (2006) found that in sand habitats (grain size not defined by many of the studies
included in the analysis), intertidal dredging produced the most severe initial impact out of all of
the fishing activities analysed, and no recovery had occurred by the final observation time period
(time category > 50 days).

Dernie et al. (2003) compared the recovery rate of benthic assemblages in different sediment
types following physical disturbance (the creation of a ‘pit’ in the sediment surface, the scale of
which was chosen to be relevant to bait digging, hand-raking, suction dredging and some forms of

https://www.marlin.ac.uk/habitats/detail/1170



Date: 2018-03-08 Polychaetes and Angulus tenuis in littoral fine sand - Marine Life Information Network

trawling) of different intertidal habitats (clean sand (< 3% silt and clay), silty sand (5-20% silt and
clay), sandy mud (35-45% silt and clay) and mud (>55% silt and clay)) in the Menai Strait, North
Wales.

Ferns et al. (2000) studied the effect of experimental tractor dredging for cockles on non-target
invertebrates in areas of both intertidal clean sand and intertidal muddy sand at Burry Inlet, South
Wales. The study showed that mechanical cockle harvesting resulted in the loss of a significant
proportion of the most common invertebrates from both the clean sand and muddy sand areas.
Annelids, molluscs and crustacean declined by 32%, 45% and 81% respectively in the clean sand
area respectively post harvesting. Invertebrate populations in the clean sand area with relatively
few cockles recovered more quickly than those in the muddy sand area. The time to recovery for
the most abundant invertebrate species in the clean sand area were: Tetrastemma sp., reduced by
55% post harvesting, 8 days to recovery; Bathyporeia pilosa, reduced by 82% post harvesting, 39
days to recovery; and Hydrobia ulvae, 56% reduction post harvesting, 8 days to recovery.

Rostron (1995, cited in Gubbay & Knapman 1999) undertook experimental dredging of sandflats
with a mechanical cockle dredger, including a site comprising stable, poorly sorted fine sands with
small pools and Arenicola marina casts with some algal growths. At this site, post-dredging, there
was a decreased number of Pygospio elegans with no recovery to pre-dredging numbers after six
months and disappearance of Scoloplos armiger from some dredged plots. The distribution of
Nephtys hombergii was disturbed by dredging, with recovery after six months. There was a large
decline in numbers of Hydrobia ulvae, with statistical differences between the dredged sites and
control sites up to six months post-dredging. Cerastoderma edule numbers were reduced by
dredging, with significant reductions in numbers compared with the control still apparent up to six
months post-dredging. The dredge tracks were still visible after 6 months (summarised in Gubbay,
1999)

Nephtys cirrosa and Spiophanes bombyx were characterizing species of infauna assemblages in both
control and impact sample sites on the Thornton Bank Belgium (North Sea), before and after
dredging occurred as part of the construction process for an offshore wind farm (Coates et al.
2015). Recovery of assemblages occurred within one to two years at individual dredged sites. The
species potentially display resilience to dredging activities as past aggregate dredging had also
occurred before wind farm construction.

Nephtys cirrosa was found to be sensitive to experimental trawling disturbance over 18 months
(Tuck et al., 1998). Nephtys cirrosa is also likely to be vulnerable to dredging but can probably
accommodate limited sediment deposition from the dredging process (MES, 2010).

Collie et al. (2000) found that abundance of Nephtys hombergii was negatively affected by fishing
activities. Mean response of infauna and epifauna communities to fishing activities was also much
more negative in mud and sand communities (such as this biotope) than other

habitats. Nephtys hombergii abundance also significantly decreased in areas of the Solent, UK,
where bait digging had occurred (Watson et al. 2007). Similarly, Nephtys hombergii abundance was
reduced by 50% in areas where tractor towed cockle harvesting was undertaken on experimental
plots in Burry inlet, south Wales, and had not recovered after 86 days (Ferns et al., 2000).

Capitella capitata, are soft bodiedrelatively fragile species inhabiting mucus tubes close to the
sediment surface. Abrasion and compaction of the surficial layer may damage individuals.

Capitella capitata and Pygospio elegans were categorised as AMBI fisheries Group V- as ‘second-
order opportunistic species, which are sensitive to fisheries in which the bottom is disturbed. Their
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populations recover relatively quickly however and benefit from the disturbance, causing their
population sizes to increase significantly in areas with intense fisheries’ (Gittenberger & Van Loon
2011).

Spio filicornis is a soft bodied organism that exposes its palps at the surface while feeding. It lives
infaunally in sandy sediment and any physical disturbance that penetrates the sediment, for
example dredging or dragging an anchor, would lead to physical damage of Spio filicornis. However,
adult worms can burrow up to 10 cm and may escape the disturbance. Juveniles can only burrow
up to 2 cminto the sediment and are likely to be affected. However, individuals are likely to pass
through a passing scallop dredge due to their small size. Bergman and Hup (1992) reported that
the total density of spionids actually increased with increased fishing disturbance presumably due
to their ability to colonize newly exposed substratum. Hall et al. (1990) investigated the impact of
hydraulic dredging for razor clams. They reported that any effects only persisted for a short time,
with the community restored after approximately 40 days in stormy conditions. The population
density of Spio filicornis was slightly reduced in the dredged site relative to the control site but its
abundance had increased over that of the control site after 40 days. However, the control site
showed a similar level of variation in abundance.

Bergman and Santbrink (2000) found that direct mortality of gammarid amphipods, following a
single passage of a beam trawl (in silty sediments where penetration is greater) was 28%. Similar
results were reported from experiments s in shallow, wave disturbed areas, using a toothed, clam
dredge. Bathyporeia spp. experienced a reduction of 25% abundance in samples immediately after
intense clam dredging, abundance recovered after 1 day (Constantino et al., 2009). Experimental
hydraulic dredging for razor clams resulted in no statistically significant differences in Bathyporeia
elegans abundances between treatments after 1 or 40 days (Hall et al., 1990), suggesting that
recovery from effects was very rapid. Ferns et al. (2000) examined the effects of a tractor-towed
cockle harvester on benthic invertebrates and predators in intertidal plots of muddy and clean
sand. Harvesting resulted in the loss of a significant proportion of the most common invertebrates
from both areas. In the muddy sand, the population of Bathyporeia pilosa remained significantly
depleted for more than 50 days, whilst the population in clean sand recovered more quickly. These
results agree with other experimental studies that clean sands tend to recover more quickly that
other habitat types with higher proportions of fine sediment (Dernie et al., 2003).

Bergman and Hup (1992) found that worm species (including Scoloplos armiger) showed no change
in total density after trawling a subtidal habitat. Conversely, a later study by Bergman and
Santbrink (2000) found that the direct mortality of Scoloplos armiger from a single passage of a
beam trawl in subtidal silty grounds was 18% of the population. Rostron (1995) undertook
experimental dredging of sandflats with a mechanical cockle dredger, including a site comprised of
stable, poorly sorted fine sands with small pools and Arenicola marina casts with some algal
growths. At this site, post-dredging Scoloplos armiger had disappeared from some dredged plots.
Fernset al. (2000) used a tractor-towed cockle harvester, to extract cockles from intertidal plots of
muddy sand and clean sand, to investigate the effects on non-target organisms; 31% of the
population of Scoloplos armiger (initial density of 120 per m2) were removed. Populations

of Scoloplos armiger remained significantly depleted in the area of muddy sand for more than 50
days after harvesting. Ball et al. (2000) found that species includingScoloplos armiger showed a
significant decrease in abundance of between 56-27% after 16 months of otter trawling at a
previously unfished Scottish sea loch. Chandrasekara and Frid (1996, cited in Tyler-Walters &
Arnold, 2008) found that along a pathway heavily used for five summer months (ca. 50 individuals
day-1), Scoloplos armiger reduced in abundance. Recovery took place within 5-6 months. These
studies suggest that Scoloplos armigeris likely to be impacted by sediment disturbance and that
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recovery to previous densities may require more than two years.

A number of studies have found that the abundance of the polychaete Pygospio elegans is reduced
by simulated cockle dredging (Hall & Harding, 1998; Moore, 1990; Ferns et al., 2000; Rostron,
1995). Ferns et al. (2000) found that tractor towed cockle harvesting removed 83% of Pygospio
elegans (initial density 1850/ m2). In muddy sand habitats, Pygospio elegans had not recovered to
the original abundance after 174 days (Ferns et al.,2000). Rostron (1995) also found that Pygospio
elegans had not recovered to pre-dredging numbers after six months. Conversely, Hall & Harding,
(1998) found that abundance of Pygospio elegans increased significantly over 56 days following
suction dredging. Pygospio elegans inhabits a fragile tube that projects above the sediment surface
and is probably more vulnerable to physical disturbance and abrasion than other, more deeply
buried, infaunal species.

Sensitivity assessment. Although some polychaetes may be able to reposition following
sedimentation at the pressure benchmark this will depend on the characteristics of the
overburden and sedentary species such as Pygospio elegans are likely to suffer high levels of
mortality. Resistance of the biotope is assessed as ‘Low’, as a proportion of the population of
characterizing species may be removed, however, species in the biotope are adapted to
disturbance and recover quickly Hence, resilience is assessed as ‘High’, and sensitivity is assessed

as ‘Low’.
Changesinsuspended  High High
solids (water clarity) Q:Low A:NRC:NR Q: High A: High C: High Q: Low A: Low C: Low

The characterizing species live within the sand and are unlikely to be directly affected by an
increased concentration of suspended matter in the water column. An increase in organic particles
may benefit the characterizing species Macoangulus tenuisWithin the mobile sands habitat storm
events or spring tides may re-suspend or transport large amounts of material and therefore
species are considered to be adapted to varying levels of suspended solids. which is a suspension
feeder. Bathyporeia spp. feed on diatoms within the sand grains (Nicolaisen & Kanneworff, 1969),
anincrease in suspended solids that reduced light penetration could alter food supply. However,
diatoms are able to photosynthesize while the tide is out and therefore a reduction in light during
tidal inundation may not affect this food source, depending on the timing of the tidal

cycle. Bathyporeia spp. may be regular swimmers within the surf plankton, where the concentration
of suspended particles would be expected to be higher (Fincham, 1970a).

However, the biotope is characterized by a low amount of organic matter and an increase in
suspended solids may cause a change in this factor if this is coupled with changes in hydrodynamics
that reduce particle re-suspension. Increased suspended solids are unlikely to have a direct impact
on infauna but increased organic matter may result in an increase in the abundance of
opportunistic species such as Capitella capitella and oligochaetes. Biotope resistance is assessed as
‘High’ and resilience as ‘High’ (by default), so that the biotope is assessed to be ‘Not sensitive’.

Smothering and siltation High High
rate changes (light) Q:Low A:NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Mobile and/or burrowing species (including molluscs and polychaetes such as Nephtys spp.,
and Scoloplos armiger) are generally considered to be able to reposition following periodic siltation
events or low levels of chronic siltation. Venerid bivalves are typically able to relocate within the
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sediment in response to siltation and Macoangulus tenuis may be able to relocate to the surface
and/or extend its siphons to the surface to maintain respiration while burrowing. Nepthys cirrosa
occurs in fine to coarser sands, with greatest abundance in the Belgium part of the North Sea
recorded in medium grain sizes (Degraer et al., 2006). A light deposition of fine sediment may lead
to small but insignificant changes in abundance as it will reduce the available preferred habitat
with medium grain size. As the tidal flow is likely to be relatively strong in this biotope, a light
deposition of finer sediment is likely to be resuspended.

Sensitivity assessment. None of the characterizing species are considered likely to be significantly
impacted by deposition of up to 5 cm of fine material. Resistance is assessed as ‘High’. Resilience as
‘High’ and Sensitivity as ‘Not sensitive’.

Smothering and siltation High Low
rate changes (heaVY) Q: Medium A: Medium C: Medium  Q: Medium A: Medium C: Medium  Q: Medium A: Medium C: Medium

Studies have found that beach ‘replenishment’ or ‘nourishment’ that involves the addition of
sediments on beaches can have a number of impacts on the infauna (Peterson et al.,

2000; Peterson et al., 2006). Impacts are more severe when the sediment added differs
significantly in grain size or organic content (Nelson et al., 1989; Peterson et al., 2000). For
example, Maurer et al. (1981) found that the amphipod Parahaustorius longimerus which occurs
intertidally in clean, well-sorted sands and is an active, effective burrower was able to regain the
surface after being buried by sand far more easily than when buried under silt/clay mixtures.

Bijkerk (1988, results cited from Essink, 1999) indicated that the maximal overburden through
which small bivalves could migrate was 20 cm in sand for Donax and approximately 40 cm in mud
for Tellina sp. and approximately 50 cm in sand. No further information was available on the rates
of survivorship or the time taken to reach the surface.

Nephtys cirrosa is a large infaunal species, with adult size between 6 cm and 10 cm and capable of
moving through the sediment, suggesting some resilience to smothering. Nephtys cirrosa is an
active worm which demonstrates the characteristic swimming motion (a rapid lateral wriggling,
starting from the rear and increasing in amplitude towards the head) of the Nephtyidae.
Deposition of up to 30 cm of fine material is likely to bury some individuals beyond the typical 5 to
15 cm depth of tunnels. It is likely Nephtys cirrosa close to the surface may be capable of relocating
in the sediment although feeding and reproduction activities are likely to be interrupted.

Nepthys cirrosa occurs in fine to coarser sands, with greatest abundance in the Belgium part of the
North Sea recorded in medium grain sizes (Degraer et al., 2006). Presence of fine material may lead
to small but insignificant changes in abundance as it will reduce the available preferred habitat
with medium grain size. As the tidal flow is strong in this biotope, a light deposition of finer
sediment is likely to be resuspended. Resistance is likely to be high to the presence of finer
material for Nepthys cirrosa but initial smothering is likely to cause some mortality and interrupt
feeding and reproduction activity at the benchmark level.

Bijkerk (1988, results cited from Essink, 1999) found that the maximal overburden through
which Bathyporeia could migrate was approximately 20 cm in mud and 40 cm in sand. No further
information was available on the rates of survivorship or the time taken to reach the surface.

Sensitivity assessment. Overall smothering by 30 cm of fine sediments may result in mortality of
characterizing species. The introduction of fine sediment may also alter the sediment typical of the
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biotope causing a temporary shift in the abundance of species. However, the opportunistic species
occurring in the biotope are likely to recover rapidly following sediment recovery. Biotope
resistance is, therefore, assessed as 'Low’, resilience is assessed as ‘High’, following habitat
recovery to fine sands and biotope sensitivity is assessed as ‘Low’.

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

Litter

Plastic debris breaks up to form microplastics. Microplastics have been shown to occur in marine
sediments and to be ingested by detritivores such as the amphipod Orchestia gammarellus, deposit
feeders such as Arenicola marina and holothurians, as well as by suspension feeders, e.g. Mytilus
edulis (Wright et al., 2013b; Browne et al., 2015).

Wright et al. (2013) showed that the presence of microplastics (5% UPVC) in a lab study
significantly reduced feeding activity when compared to concentrations of 1% UPVC and controls.
As aresult, Arenicola marina showed significantly decreased energy reserves (by 50%), took longer
to digest food, and as a result decreased bioturbation levels, which would be likely to impact
colonization of sediment by other species, reducing diversity in the biotopes the species occurs
within. Wright et al. (2013) suggested that in the intertidal regions of the Wadden Sea, where
Arenicola marina is an important ecosystem engineer, Arenicola marina could ingest 33m?® of
microplastics a year.

In a similar experiment, Browne et al. (2013) exposed Arenicola marina to sediments with 5% PVC
particles or sand presorbed with pollutants nonylophenol and phenanthrene for 10 days. PVCiis
dense and sinks to the sediment. The experiment used Both microplastics and sand transferred the
pollutants into the tissues of the lugworm by absorption through the gut. The worms accumulated
over 250% more of these pollutants from sand than from the PVC particulates. The lugworms
were also exposed to PVC particulates presorbed with plastic additive, the flame retardant
PBDE-47 and antimicrobial Triclosan. The worms accumulated up to 3,500% of the concentration
of theses contaminants when compared when to the experimental sediment. Clean sand and PVC
with contaminants reduced feeding but PVC with Triclosan reduced feeding by over 65%. In the
PVC with Triclosan treatments, 55% of the lugworms died. Browne et al., 2013 concluded that the
contaminants tested reduced feeding, immunity, response to oxidative stress, and survival (in the
case of Triclosan).

Sensitivity assessment. Impacts from the pressure ‘litter’ would depend on upon the exact form of
litter or man-made object being introduced. Browne et al. (2015) suggested that if effects in the
laboratory occurred in nature, they could lead to significant changes in sedimentary communities
as Arenicola marina is an important bioturbator and ecosystem engineer in sedimentary habitats.
Arenicola marina does not reach high abundances in this biotope but other deposit feeding
polychaetes could potentially ingest microplastics, although no evidence in available at present.
This pressure is 'Not assessed' as no benchmark has been defined for this pressure.

. No evidence (NEv) No evidence (NEv) No evidence (NEv)
Electromagnetic changes
Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR
Electric and magnetic fields generated by sources such as marine renewable energy device/array
cables may alter behaviour of predators and affect infauna populations. Evidence is limited and
occurs for electric and magnetic fields below the benchmark levels, confidence in evidence of
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these effects is very low.

Field measurements of electric fields at North Hoyle wind farm, North Wales recorded 110u V/m
(Gill et al. 2009). Modelled results of magnetic fields from typical subsea electrical cables, such as
those used in the renewable energy industry produced magnetic fields of between 7.85 and 20 uT
(Gill et al. 2009; Normandeau et al. 2012). Electric and magnetic fields smaller than those recorded
by in field measurements or modelled results were shown to create increased movement in
thornback ray Raja clavata and attraction to the source in catshark Scyliorhinus canicular (Gill et al.
2009).

Flatfish including dab Limanda limanda and sole Solea solea are predators of many polychaete
species. They have been shown to decrease in abundance in a wind farm array or remain at
distance from wind farm towers (Vandendriessche et al., 2015; Winter et al. 2010). However, larger
plaice increased in abundance (Vandendriessche et al., 2015). There have been no direct causal
links identified to explain these results.

Sensitivity assessment. No evidence was found on effects of electric and magnetic fields on the
characterizing species. However, responses by flatfish and elasmobranchs suggest changes in
predator behaviour are possible. There is no evidence currently but if electromagnetic fields
affect predator-prey dynamics as further marine renewable energy devices are deployed, these
are likely to be over small spatial scales and unlikely to significantly impact the biotope.

Underwater noise Not relevant (NR) Not relevant (NR) Not relevant (NR)
changes Q:NRA:NRC: NR Q:NRA:NRC:NR Q:NRA: NR C: NR

Species within the biotope can probably detect vibrations caused by noise. However, at the
benchmark level the community is unlikely to be sensitive to noise and this pressure is
therefore ‘Not relevant’.

Introduction of lightor  High High
shading Q:Low A: NRC: NR Q: High A: High C: High Q: Low A: Low C: Low

As this feature is not characterized by the presence of primary producers it is not considered that
shading would alter the character of the habitat. As the characterizing biological assemblage
occurs within the sediment, an increase in light or shading is considered ‘Not relevant’. However,
shading may reduce the microphytobenthos component of this infralittoral biotope. Mucilaginous
secretions produced by these algae may stabilize fine substrata (Tait & Dipper, 1998). Shading will
prevent photosynthesis leading to death or migration of sediment microalgae, which may alter
sediment cohesion and food supply to higher trophic levels.

Sensitivity assessment. Changes in light are not considered to directly affect the biotope.
However, some changes in behaviour or food supply for characterizing species could result.
Overall, this Resistance is assessed as High. Therefore, resilience is High and the biotope is
assessed as Not sensitive

Barrier to species High High Not sensitive
movement Q:LowA:NRC:NR Q: High A: High C: High Q: Low A: Low C: Low
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The characterizing species Macoangulus tenuis, Spio filicornis and Nephtys cirrosa produce pelagic
larvae. Barriers that limit tidal excursion and flushing may reduce connectivity but equally may
help to retain larvae within areas of suitable habitat. Pygospio elegans are capable of both benthic
and pelagic dispersal and Bathyporeia spp brood young. In the sheltered waters where some
examples of this biotope occur, in-situ reproduction may maintain populations rather than long-
range pelagic dispersal. The biotope is considered to have ‘High’ resistance to the presence of
barriers that lead to a reduction in tidal excursion, resilience is assessed as ‘High’ (by default) and
the biotope is considered to be ‘Not sensitive’

Death or injury by Not relevant (NR) Not relevant (NR) Not relevant (NR)
collision Q:NRA: NR C: NR Q:NRA: NR C: NR Q:NRA: NR C: NR

Not relevant’ to seabed habitats. NB. Collision by grounding vessels is addressed under ‘surface
abrasion’.

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q:NRA:NR C: NR Q:NRA:NR C: NR Q:NRA:NR C:NR

Visual disturbance

Characterizing species may have some, limited, visual perception. As they live in the sediment the
species will most probably not be impacted at the pressure benchmark and this pressure is
considered 'Not relevant'.

% Biological Pressures

Resistance Resilience Sensitivity
Genetic m9dification &  Not relevant (NR) Not relevant (NR) Not relevant (NR)
translocation of
indigenous species Q:NRA:NRC:NR Q:NRA:NRC:NR Q:NRA:NRC:NR

Important characterizing species within this biotope are not cultivated or translocated. This
pressure is, therefore, considered ‘Not relevant’ to this biotope.

Introduction or spread of Very Lo High
invasive non-indigenous
species Q: High A: High C: High Q:Low A:NRC:NR Q: Low A: Low C: Low

Coastal and estuarine areas are among the most biologically invaded systems in the world,
especially by molluscs such as the slipper limpet Crepidula fornicata and the Pacific

oyster Magallana gigas (OSPAR, 2009b). The two species have not only attained considerable
biomasses from Scandinavian to Mediterranean countries but have also generated ecological
consequences such as alterations of benthic habitats and communities, or food chain changes. In
the Wadden Sea, the main issue of concern is the Pacific oyster (Magallana gigas), which has also
spread in the Thames estuary and along French intertidal flats. Padilla (2010) predicted

that Magallana gigas could either displace or overgrown mussels on rocky and sedimentary
habitats of low or high energy. In general littoral sand sediments are mobile and winter storms may
remove sediments and wash-out some species (Connor et al., 2004) preventing the establishment
of larger, longer-lived species and the development of bivalve reefs. However, as some beaches in
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which the biotope occur may be relatively sheltered some colonization may occur and sensitivity
to invasive molluscs is considered.

In the Wadden Sea and the North Sea, Magallana gigas overgrows mussel beds in the intertidal
zone (Diederich 2005, 2006; Kochmann et al., 2008), although they did show a preference for
settling on conspecifics before the mussels and struggled to settle on mussels with a fucoid
covering. However, recruitment of Magallana gigas was significantly higher in the intertidal than
the shallow subtidal, although the survival of adult oysters or mussels in the subtidal is limited by
predation.

Crepidula fornicata is known to colonize and smother a wide range of sediments in the subtidal,
from mixed sediments to mud, especially in prior shellfish beds (e.g. of oysters and mussels)
(Blanchard, 1997; Minchin et al., 1995). Crepidula fornicata larvae may out-compete oyster
(Magallana gigas) larvae during summer months where the two species co-occur. Trophic
competition between adult Crepidula fornicata and Magallana gigas was reported in France during
winter and spring. In Mont Saint-Michel Bay, France, slipper limpet populations have affected
flatfish populations. Changes in habitat structure and reduced abundance of suspension feeding
organisms upon which the flatfish feed were linked to slipper limpet extent (Decottignies et

al., 2007; Blanchard et al. 2008; and Kostecki et al., 2011 cited in Sewell & Sweet, 2011).

On some north Wales shores Ensis siliqua occurs (Connor et al., 2004), this species could co-occur
with or be replaced by a similar, but non-native species Ensis directus. Such a change is unlikely to
alter the character of the biotope.

Sensitivity assessment. Magallana gigas is predicted to invade sedimentary habitats, although no
direct examples exist to date and Magallana gigas recruitment is lower in the subtidal (Diederich
2005, 2006; Padilla, 2010). Crepdiula fornicata is a major invader and colonizer of subtidal
sediments. However, both species require hard substrata in the form of stones, debris or,
preferably, the shells conspecifics to colonize the habitat. This biotope is dominated by fine sand
and a shell fraction is not recorded in the description (Connor et al., 2004) but if artificial hard
debris (e.g. litter) was introduced to the habitat then it may provide an initial point for the
colonization of Crepidula in particular. Although it would probably take many years, colonization
by Crepidula would result in the complete modification of the habitat, reclassification and loss of
the biotope, although polychaete populations may survive in the sediment itself. Therefore, a
precautionary resistance of Low has been suggested with ‘Low’ confidence due to the lack of direct
evidence. Resilience is likely to be Very low as a bed of Crepidula or Magallana gigas would need to
be removed before recovery could begin. Therefore, sensitivity is assessed as High.

Introduction of microbial No evidence (NEv) No evidence (NEv) No evidence (NEv)
pathogens Q:NRA:NRC:NR Q:NRA: NR C: NR Q:NRA: NR C: NR

No evidence was found to assess this pressure.

Removal of target High Medium
species Q: High A: High C: High Q: High A: Medium C: High Q: High A: Medium C: High

The only species characterizing the biotope that is likely to be removed is Nephtys cirrosa which is
targeted by bait diggers. There is limited information on the effect of targeted removal on Nephtys
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cirrosa populations, however, there is evidence on effects on Nephtys hombergii. Nephtys hombergii
is directly removed through commercial bait digging and by recreational anglers and abundance
significantly decreased in areas of the Solent, UK, where bait digging (primarily for Nereis virens)
had occurred (Watson et al. 2007). Recovery of Nephtys hombergii has been assessed to be high as
re-population would occur initially relatively rapidly via adult migration and later by larval
recruitment. Dittman et al. (1999) observed that Nephtys hombergii was amongst the macrofauna
that colonized experimentally disturbed tidal flats within two weeks of the disturbance that
caused defaunation of the sediment. However, if sediment is damaged recovery is likely to be
slower, for instance, Nephtys hombergii abundance was reduced by 50% in areas where tractor
towed cockle harvesting was undertaken on experimental plots in Burry inlet, south Wales, and
had not recovered after 86 days (Ferns et al., 2000).

Removal of Nephtys cirrosa by bait digging may cause short-term loss of food resources for
predators such as fish species including Limanda limanda and Pleuronectes platessa. As recovery is
medium to high the long term impacts on populations are likely to be small, but will be dependent
upon the scale and frequency of bait digging activities.

Sensitivity assessment. Confidence in this assessment in relation to the removal of Nephtys cirrosa
is low as it is based on evidence of removal of Nephtys hombergii. However, biotope resistance is
assessed as ‘Low’ based on direct removal of a characterizing species, Resilience is assessed as
‘High’ as habitats that are not regularly harvested may recover rapidly, it should be noted

that continued harvesting will inhibit recovery. Biotope sensitivity to a single harvesting event is
assessed as ‘Low’. It is important to consider that the spatial extent and duration of harvesting is
important to consider when assessing this pressure as smaller scale extraction may not impact the
entire extent of the biotope but greater scale extraction over a long period would cause longer-
term impacts.

Removal of non-target High Medium
species Q: Medium A: Low C: Medium Q: Medium A: Low C: Medium Q: Medium A: Low C: Medium

Direct, physical impacts are assessed through the abrasion and penetration of the seabed
pressures, while this pressure considers the ecological or biological effects of by-catch. Species in
this biotope, including the characterizing species, may be damaged or directly removed by static or
mobile gears that are targeting other species (see abrasion and penetration pressures). A study of
the effects of hydraulic dredging in Dundalk Bay, Ireland indicated that there was a short-lived
effect (<4 months) of the fishery on Macoangulus (studies as Angulus) tenuis and the target species
Cerastoderma edule, which spatially overlapped (Clarke & Tully, 2011). The authors concluded that
the dominant species in the benthic community, including Macoangulus (as Angulus) tenuis, and a
number of polychaete species had low sensitivity (high resilience and high recoverability) to
disturbance.

Collie et al. (2000) found that abundance of a Nephtys hombergii was negatively affected by fishing
activities. Mean response of infauna and epifauna communities to fishing activities was also much
more negative in mud and sand communities (such as this biotope) than other habitats. Nephtys
hombergii abundance also significantly decreased in areas of the Solent, UK, where bait digging had
occurred (Watson et al. 2007). Similarly, Nephtys hombergii abundance was reduced by 50% in
areas where tractor towed cockle harvesting was undertaken on experimental plots in Burry inlet,
south Wales, and had not recovered after 86 days (Ferns et al., 2000).

Sensitivity assessment. The incidental damage or removal of a proportion of the population (e.g.
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by commercial bait digging) may change the character of the community temporarily. The biotope
is disturbed seasonally by storms, (Connor et al., 2004) and is likely to recover quickly. However,
disturbance from repeated events e.g. by periodic bait digging (see above) may prolong recovery.
Biotope resistance is assessed as ‘Low’ based on removal or damage of characterizing species, that
on commercial scales can remove a large proportion of the population and lead to an impacted
community. Resilience is assessed as ‘High’ but it should be noted that continued harvesting will
impact the population and Nephtys cirrosa will take longer to recover if harvesting is over extended
spatial scales.Biotope sensitivity is assessed as ‘Low’. It is important to consider that the spatial
extent and duration of areas impacted by removal is important to consider when assessing this
pressure, as smaller scale extraction may not impact the entire extent of the biotope but greater
scale extraction over a long period would cause longer term impacts. The type of fishing activity is
also important to consider in relation to the type and severity of the impact.
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